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Some Notes on Generalized Young Inequality for n Numbers

"Corresponding email: ! XXXXXXXXX

Abstract. In this note we obtain a generalized of Young's inequality for n numbers. From the
inequality, we also get the generalized of Holder’s Inequality and Minkowski’s inequality for n
terms. Furthermore result, some improved of the generalized Young’s inequality for n numbers
is discussed.
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1. Introduction

Let a and b be positive numbers. The Famous Young inequality ||| state that

ab < —+— (1.1)
D
1,
foreveryp,g = 1 with;+a =lorg =
The Classical Young inequality is also rewritten as

a’h'™ <da+ (1 -1)b (1.2)
1 1
by putting @ == ar ,b = ba,and A = g (clearly,0 < 1 < 1).

Based on Young’s inequality, we can derive two other well-known inequalities namely the Holder’s
inequality and the Minkowski’s inequality, which are some applications of Young's inequality. Apart
from these two inequalities, Young's inequality also has many other applications. So, many
mathematicians are interested in discussing Young's inequality. @

Many researchers also try to generalize, improve, and refine these inequalities. An improvement of
Young’s inequality, obtained by F. Kittaneh and Y. Manasrah [2], is as follows




@b +ro(Va—Vb)’ <Aa+ (1 - b (1.3)
with 7y = min{A, 1 — A}
?he authors of | 3] obtained another refinement of the Young inequality as
(a*b1%)? 4 r3(a — b)? < (Aa+ (1 — A)b)? (1.4)
with 7y = min{A, 1 — A}
Other development results of Youn%’s inequality can also be seen in [4-9].

In the other hand, we know that the classical Young inequality for two scalars is the v-weighted
arithmetic—geometric mean inequality, which is a fundamental relation between two nonnegative real
numbers. The question arises: what is the generalization of Young's inequality if there are n numbers?
as an application of the generalization of these inequalities, what inequalities can be generated? And
what is the form of development of the generalization of Young's inequality?

In this paper, we will introduce the generalization of Young's inequalities involving n numbers. This
paper will also discuss the inequalities that will result from the generalization of these inequalities, in
particular the generalization of Holder’s inequality and generalization of Minkowski’s inequality. And
furthermore, inspired by the refinement of [2] and [3], we will also discuss the refinement of the
generalization of these inequalities.

2. Main Result
2.1. Generalized Young’s inequality for n numbers
We will start by introducing a generalization of Young’s inequality involving n numbers. This form is a

generalization of the classical form of Young's inequality.
E}

Theoiffin 1.If a; are positive numbers forall i = 1,2,3, ...,nand p; > 1foralli = 1,2,3,...,n such that
Elei = 1, then
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i=1 i=1
Proaf:

We will use mathematical induction to prove this theorem. For n = 1, the inequality is clearly satisfied.
For n = 2, the inequality is directly satisfied from Young's inequality.

Now , assume that the inequality is true for n = k. we get

H a; < zk: % (ay)P

=1 i=1

The next, we will proof that the inequality is also true forn = k + 1.
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where g; =p; fori=1,..,k—1,q, =q, and g1 = % Furthermore, we can easily prove that

1 . .
’gi; = 1. So, the inequality has been proven.
L

Next, the inequality (2.1) can be written as

ﬁ(a;‘)h < Zn: Aag (2.2)
=1 =1

2
Remark. When comparing the inequality (2.1) with the inequality (1.1), or (1.2) with (2.2), it is easy to
observe that the left-hand side and the righthand side in the inequality (2.1) or (2.2) consist of n numbers,
while in the inequality (1.1) or (1.2) there are only 2 numbers. It should be noticed here that either the
inequality (2.1) or (2.2) is a generalization of the inequality (1.1) or (1.2).

2.2. Generalized Holder’s inequality with n terms

In this chapter, we will introduce a generation of Holder’s inequalities obtained from the generalized
Young's inequalities for n numbers.

Theorem 2.2. For any vectors x; in C™, and for any positif numbers p; satisfying E?zli =1, we have

< aninpi, 23)

where
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Proof:

If one of x; is zero, the inequality certainly holds with equality. Otherwise, assume X; are nonzero for
X

every [ €{1,2,3,...,n}, and let u; = Tl and note that [|u;|l,, = 1 for all i. Then by using equation
illp;
(2.1)
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Now multiplying both sides by the positive quantity ]']?=1||xi||pi to obtain the statement of the theorem.

To achieve equality, each term in the sum must achieve equality in inequality (2.1), i.e., for all k €

{1,2,3,..,m}, |ulk| = |u2k| == |unk|, wich translates to the statement in the theorem since |u;| =
bl for all i.
llxillp;

Remark. The inequality (2.3) is a generalization of the Holder inequality which is known as follows.
For any vectors x and y in C™, and for any positif numbers p and q satisfying ; +.;-B: 1, we have

S
D i+ il < el il
k=1

1 1
Where ||x|l, = (ZkLylxi|? )P dan [[yll, = (ZRZalyel?)a.

2.3. Generalized Minkowski’s inequality with n terms
In this chapter, we will also introduce a generation of Minkowski’s inequalities.

Theorem 2.3. For any vectors u; in €™, and for any positive number p > 1, we have




n

< gyl 2.4)
p =1

n
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Equality hold if and only if aw; = bu; for every i # j and for some non-negative real constants a and
b, not both zero.

Proof:
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The theorem follows by dividing both sides by the positive quantity (||E?=1ui||p)p_l. To achieve
equality it is necessary that the triangle inequality (n numbers) for complex numbers holds with equality
for each term.

Remark. The inequality (2.4) is a generalization of the h@Hler inequality which is known as follows.
For any vectors © and v in C™, and for any positif number p > 1, we have

e+ vllp < lully + vl
Equality hold if and only if au = bv for some non-negative real constants a and b, not both zero.
3. Refinements of the scalar Young ineguality

Theorem 3.1. If a; are positive numbers for all i = 1,2,3,...,nand 0 < A; <1 foralli =1,23,..,n
such that ¥, 4; = 1, then
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fori € {1,2,3,...,n}.

where 7; = min [}li, 1-24,-2%%4 AJ,]
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Proof:
IfA; = % for every i and n = 2, the iaquality becomes an equality. Assume that 4; < % for every i €
{1,2,3, ...,n}. Then by the inequality, we have
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Where 4, =1 — ¥7' 4;, and so

n n—1 n
2 .
Eliai—Zli(‘;ai—‘;an) Eﬂaf‘
i=1 i=1 i=1

If there is ip € {1,2, ..., n — 1} such that 4; > % then A; < % forevery i € {1,2,3,...,n} — {ip} and
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This completes the proof.

As a direct consequence of Theorem 3.1, we have

(b=
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and so
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Corollary 3.2. If ok positive numbers fnr alli=123,..,nand0<A4; <1foralli =123, ..,n
such that 1, 4; = 1, then

?11_ Z (H ) Zﬁ(\/_ Jan)’ <Za; (3.2)
eliz3, .n)

Corollary 3.3. If a; are positive numbers forall i = 1,2,3,...,nand 0 < A; <1 foralli =123, ...,n
such that /-, 4; = 1, then
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(H afi) + Z ri(a; —ap)? < Z AaZ < (Z fliai) (3.3)
i=1 i=1 i=1

i=1

fori € {1,2,3,...,n}.

where 7; = min [Ai, 1-2,-2%%4 AJ,]
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Proof:

If we putting a; by a , the inequality can be written in the form

(ﬁafﬂ)g nzlr(a a,)? <Z,1a 4(51,1 )
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flemark. When comparing the inequality (3.1) with the inequality (1.3) and also the inequality (3.3)
with the inequality (1.4), it is easy to observe that the inequality (3.1) is a refinement of the inequality
(1.3), and the inequality (3.3) is a refinement of the inequality (1.4) by generalizing the number of terms
to n numbers.
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